
Unsupervised NLP 
Techniques & The Kaggle 

Forums

Rachael Tatman, Kaggle











Problem: I can't keep reading all the 
forum posts on Kaggle with my 
human eyeballs



Problem: I can't keep reading all the 
forum posts on Kaggle with my 
human eyeballs

Solution: Unsupervised clustering to 
summarize common topics & user 
concerns



Problem: I can't keep reading all the 
forum posts on Kaggle with my 
human eyeballs

Solution: Unsupervised clustering to 
summarize common topics & user 
concerns



Some ground rules:

● Needs to be in Python or R
○ I’m livecoding the project in Kernels & those are the only two languages we support
○ I just don’t want to use Java or C++ or Matlab whatever 

● Needs to be fast to retrain or add new classes 
○ New topics emerge very quickly (specific bugs, competition shakeups, ML papers)
○ I'll probably have to re-run it daily or weekly
○ Eventually... streaming?

● Want to avoid large/weird dependencies
○ “Oh, that’s just some .jar I downloaded from a random website. The code doesn’t run without it 

and I’m sure it’s fine to just stick in our codebase.”

● Clusters/topics should be easily interpretable



I asked on Twitter!
Lots of good ideas!

Three main bins:

● End-to-end solutions
● Suggestions for feature engineering 

+ clustering
● Misc. tips & tricks (ex: embeddings 

-> PCA -> remove 1st principle 
component)

https://twitter.com/rctatman/status/1133806246182604800


End-to-end solutions

● Gensim
✓ In Python, no weird dependencies
✓ Old standby that incorporates a looot of differents methods
✓ Don’t need whole corpus in memory (but mine’s not that big)
❌ Under LGPL (probably fine for prototyping, but might need to set up meetings with legal if I’m 

using it for work stuff & that’s more overhead than I want)

● BigARTM
✓ Can incorporate multiple objectives at once (sparsing, smoothing, decorrelation, etc.)
❌ Weird dependency/install process (it’s a C++ library with a Python API)

● TopSBM
✓ Came highly recommended: “Scary good”
❌ Weird dependency (graph-tool, which is C++ with a Python wrapper)

https://radimrehurek.com/gensim/
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://github.com/bigartm/bigartm
https://topsbm.github.io/


Feature Engineering: Words to numbers
● Traditional Topic Modelling Approaches

○ LDA: Slow, hard to interpret, not my fave
○ pLSA: Cheaper version of LSA, tends to overfit
○ tf-idf: Hard to interpret, my texts (forums posts) are too short

● Embeddings
○ GloVe: considers context, can’t handle new words
○ Word2vec: doesn’t handle small corpuses very well, very fast to train 
○ fasttext: can handle out of vocabulary words (extension of word2vec)

● Contextual embeddings (don’t think I have enough data to train my own…)
○ ELMO, BERT, etc.: I consider these more of a replacement for language models 
○ USE embeddings: Not super familiar with this but looks useful for applying to sentence 

similarity

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf


Feature Engineering: Words to numbers
● Traditional Topic Modelling Approaches

○ LDA: Slow, hard to interpret, not my fave
○ pLSA: Cheaper version of LSA, tends to overfit
○ tf-idf: Hard to interpret, my texts (forums posts) are too short

● Embeddings
○ GloVe: considers context, can’t handle new words
○ Word2vec: doesn’t handle small corpuses very well, very fast to train
○ fasttext: can handle out of vocabulary words (extension of word2vec)

● Contextual embeddings (don’t think I have enough data to train my own…)
○ ELMO, BERT, etc.: I consider these more of a replacement for language models 
○ USE embeddings: Not super familiar with this but looks useful for applying to sentence 

similarity

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf


Feature Engineering: Dimensionality Reduction
● UMAP:

○ Recommended to me by, among other people, Leland McInnes, the researcher who 
developed it 😂 (he suggested using hellinger distance)

○ Similar to t-SNE but can also be used for non-linear dimension reduction 
○ Something about manifolds? (The math’s a little over my head, tbh)

● PCA
○ OG dimensionality reduction (paper is from 1901!) but on its own maybe not the best
○ Trick: remove first principal component as a way to reduce the weight of “expected” words

■ (from Arora (2018) 'A simple but tough to beat baseline for sentence embeddings')

https://github.com/lmcinnes/umap


Feature Engineering: Dimensionality Reduction
● UMAP:

○ Recommended to me by, among other people, Leland McInnes, the researcher who 
developed it 😂 (he suggested using hellinger distance)

○ Similar to t-SNE but can also be used for non-linear dimension reduction 
○ Something about manifolds? (The math’s a little over my head, tbh)

● PCA:
○ OG dimensionality reduction (paper is from 1901!) but on its own maybe not the best
○ Trick: remove first principal component as a way to reduce the weight of “expected” words

■ (from Arora (2018) 'A simple but tough to beat baseline for sentence embeddings')

https://github.com/lmcinnes/umap


Wildcard!
● Unsupervised keyword extraction: 

YAKE
○ Extracts keywords from single texts
○ Could use it as dimensionality reduction
○ Keywords -> embeddings -> clustering?
○ One of their sample texts is about the 

Kaggle acquisition! 😊
○ Haven’t played around with it, but came 

highly recommended
○ pip install git+https://github.com/LIAAD/yake

https://github.com/LIAAD/yake
https://github.com/LIAAD/yake


Wildcard!
● Lda2vec

○ Embeddings + topic models trained 
simultaneously

○ Developed at StitchFix 3ish years ago
○ Still pretty experimental but could be helpful
○ Under MIT license
○ Has a tutorial notebook
○ Might be very slow???

https://multithreaded.stitchfix.com/blog/2016/05/27/lda2vec/#topic=38&lambda=1&term=
https://nbviewer.jupyter.org/github/cemoody/lda2vec/blob/master/examples/twenty_newsgroups/lda2vec/lda2vec.ipynb


Clustering: 
● Brown Clusters

○ Doesn’t require feature engineering; can take words directly
○ Hierarchical clusters (could be useful for visualization/exploration)
○ Can be actively updated (wouldn’t have to retrain)

● DBSCAN/H(ierarchical)DBSCAN
○ Could take embeddings
○ Clusters assumed to be of similar densities 

● Spectral clustering
○ Doesn’t make assumptions about spatial distribution of data
○ In sklearn



Clustering: 
● Brown Clusters

○ Doesn’t require feature engineering; can take words directly
○ HIerarchical clusters (could be useful for visualization/exploration)
○ Can be actively updated (wouldn’t have to retrain)

● DBSCAN/H(ierarchical)DBSCAN
○ Could take embeddings
○ Clusters assumed to be of similar densities 

● Spectral clustering
○ Doesn’t make assumptions about spatial distribution of data
○ In sklearn



Next stage: Experiments

word2vec fasttextfasttext USE

UMAP PCA - 1st YAKE lda2vec

HDBSCAN Spectral 
Clustering

Brown 
Clustering



Next stage: Experiments

word2vec fasttextfasttext USE

UMAP PCA - 1st YAKE lda2vec

HDBSCAN Spectral 
Clustering

Brown 
Clustering

First Step



YAKE -- Before
my background is from biology and, even if I have been doing bioinformatics for a few years now, I don't 
have enough knowledge of machine learning to solve this by myself: therefore, if someone is interested in 
making a two-people team with me, I would be glad to collaborate, provided that you explain the machine 
learning part to me.

In any case, since I am more interested in learning than in the prize of the competition, I will put here some 
ideas for everybody:

● the two sets of sequences represent coding sequences of two proteins; therefore, one thing to do is to 
translate them and compare the protein sequences. Even if two individuals have different DNA 
sequences for a gene, they can have the same protein sequences; and since only the protein is 
exposed to functional constraints, then it will be more interesting to see the differences in the protein 
sequences.

● analyzing k-mers doesn't seem very interesting to me. k-mers are usually used to identify regulatory 
motifs in DNA, which define when a gene is expressed, how, etc.. However, these signals usually are 
not inside the coding part of a gene sequence, but rather in the positions before or sorrounding the 
gene. So, the regulatory factors that you are looking with k-mers could be not included in the 
sequences given. For a similar reason, the GC content is not so informative.

● a possible approach would be to look at which sites are the most variable within the protein 
sequences.



YAKE -- After

● Keywords: 
○ machine learning part machine learning 

sequences represent coding represent coding 
sequences interested in making protein 
sequences glad to collaborate making a 
two-people two-people team learning part 
learning protein interested in learning 
sequences sequences represent dna 
sequences knowledge of machine explain the 
machine represent coding compare the 
protein

● One-fifth the length of the original post
● “Free” stopword removal
● Code: 

https://www.kaggle.com/rebeccaturner/yake-
example/ 

https://www.kaggle.com/rebeccaturner/yake-example/
https://www.kaggle.com/rebeccaturner/yake-example/


Brown Clustering: Good news!
Without YAKE With YAKE



Brown Clustering: Good news!
Without YAKE With YAKE

Much more informative!



Brown Clustering: Bad news
● Library I was using missing some 

key methods (like returning 
clustering) so I needed to figure out 
on my own

● Very, very slow (author didn’t 
recommend for lexicons above 5k 
so no surprise there) 

● Final output was… not great even 
after extensive tuning

Back to the drawing board :’(



Next stage: Experiments

word2vec fasttextfasttext USE

UMAP PCA - 1st YAKE lda2vec

HDBSCAN Spectral 
Clustering

Brown 
Clustering

Second Step

“Document” 
embeddings 
(squished)



Word2Vec

● Used Word2Vec 
because they were 
tunable without 
retraining

● Tuned just once on 
corpus of whole Kaggle 
forums (August 2019)

● Tuned embeddings 
saved and used 
downstream

https://www.kaggle.com/rebeccaturner/fine-tuning-word2vec-2-0

https://www.kaggle.com/rebeccaturner/fine-tuning-word2vec-2-0


“Document” embeddings

word 4 75 54 63
in 93 38 25 45
the 74 100 53 31
post 61 45 31 60

58 64.5 40.75 49.75“Document” embedding
MEAN = MEAN = MEAN = MEAN =



Spectral Clustering
● Simplest implementation: Connect 

all points with pairwise distance 
less than some pre-specified value

● Benefits: 
○ Can model more complex decision 

regions
○ Doesn’t assume groups of similar 

size/shape
○ Don’t need to specify number of group 

ahead of time
○ Great for sparse data

Comparing Spectral clustering 
(with Normalized Graph 
Laplacian) with KMeans 
Clustering, by Sandipan Dey 
http://rpubs.com/sandipan/
199446



Clustering: Running Kernels (AKA Notebooks)



Clustering: Turkish (Thanks/Congrats)



Clustering: ML Questions & Answers



Current Unsupervised Pipeline

(Tuned)
word2vec

“Document” 
embeddings 

Spectral 
Clustering

All code is public & open source (Apache 2.0):

● Fine tuning: 
https://www.kaggle.com/rtatman/fine-tuning-word2vec/

● Full pipeline (including some work on summarization): 
https://www.kaggle.com/rtatman/forum-post-embeddings-
clustering

● Live coding recordings: 
https://www.youtube.com/playlist?list=PLqFaTIg4myu9f21
aM1POYVeoaHbFf1hMc 

Thanks! Questions?

https://www.kaggle.com/rtatman/fine-tuning-word2vec/
https://www.kaggle.com/rtatman/forum-post-embeddings-clustering
https://www.kaggle.com/rtatman/forum-post-embeddings-clustering
https://www.youtube.com/playlist?list=PLqFaTIg4myu9f21aM1POYVeoaHbFf1hMc
https://www.youtube.com/playlist?list=PLqFaTIg4myu9f21aM1POYVeoaHbFf1hMc

