
@rctatman

Data Structures in R
Dr. Rachael Tatman, Kaggle Data Scientist

R-Ladies Seattle
1/23/2019

@rctatman

What are data
structures?
Ways of storing and
organizing data.

@rctatman

@rctatman

@rctatman

Same data type Different data types

1 dimension

2 dimensions

N dimensions

*I straight up copied the margins of this
chart from Hadley's "Advanced R" book,
which is very good!

@rctatman

Same data type Different data types

1 dimension

2 dimensions

N dimensions

@rctatman

Same data type Different data types

1 dimension
Atomic vector
c("a","b","c")

2 dimensions

N dimensions

@rctatman

Same data type Different data types

1 dimension
Atomic vector
c("a","b","c")

2 dimensions Matrix

N dimensions

@rctatman

Same data type Different data types

1 dimension
Atomic vector
c("a","b","c")

2 dimensions Matrix

N dimensions Array

@rctatman

Same data type Different data types

1 dimension

2 dimensions

N dimensions

@rctatman

Same data type Different data types

1 dimension List

2 dimensions

N dimensions

@rctatman

Same data type Different data types

1 dimension List

2 dimensions Data frame

N dimensions

@rctatman

Same data type Different data types

1 dimension Atomic vector List

2 dimensions Matrix Data frame

N dimensions Array

@rctatman

Same data type Different data types

1 dimension Atomic vector List

2 dimensions Matrix Data frame

N dimensions Array
Pretty much all native data structures in R are made up of some combo of these

@rctatman

Some important points
● Basically everything in R is some flavor of vector

○ Any single piece of data, like a single number or character, is a vector of length one
○ Each column in a dataframe is a vector (so can only have a single data type!)

● This means every piece of data in a data structure has a numeric "address"
that lets you go right to it

○ vector[1]
○ list[[1]]
○ Dataframe[1,1]

● Having addresses make it very fast to find and perform operations on data,
but slower to add and delete data from existing structures

○ Remember to pre-allocate your data structures!

@rctatman

R is a bit of an odd langage...
● Doesn't have native linked lists (including stacks or queues)
● Doesn't have any native hashed data structures
● Doesn't use pointers
● Doesn't have any scalars
● Doesn't use binary trees as native data structures

@rctatman

R is a bit of an odd langage...
● Doesn't have native linked lists (including stacks or queues)
● Doesn't have any native hashed data structures
● Doesn't use pointers
● Doesn't have any scalars
● Doesn't use binary trees as native data structures

Unfortunately, a lot of coding interview
questions are set up explicitly to have you

show that you know how to use these things.

@rctatman

R is a bit of an odd langage...
● Doesn't have native linked lists (including stacks or queues)
● Doesn't have any native hashed data structures
● Doesn't use pointers
● Doesn't have any scalars
● Doesn't use binary trees as native data structures

Unfortunately, a lot of coding interview
questions are set up explicitly to have you

show that you know how to use these things.

Time for a Crash
Course!

@rctatman

R is a bit of an odd langage...
● Doesn't have native linked lists (including stacks or queues)
● Doesn't have any native hashed data structures
● Doesn't use pointers (neither does Python or SQL though, so... ¯_(ツ)_/¯)
● Doesn't have any scalars (just, like, a single number or string on its own)
● Doesn't use binary trees as native data structures (basically just like decision

trees, which most data folks know about already)

Unfortunately, a lot of coding interview
questions are set up explicitly to have you

show that you know how to use these things.

@rctatman

Linked List
● Made of up a series of nodes which

contain:
○ A piece of data
○ A link to the next node in the list
○ (Sometimes a link to the previous node)

● Benefits?
○ It’s very fast to add or remove data; you

just need to update the links in the nodes
next to the ones you’ve changed

○ Nodes don’t need to be next to each other
in memory (items in a vector do)

● Drawbacks?
○ It’s very slow to get the nth element in the

list; you need to start from the beginning
and go through the first n items in the list

Data

Link to
next node

@rctatman

Hashed data structures
(E.g. hash table, hash map, Python dictionaries)

● Each piece of data (value) is associated with a
specific address (hash or key)

● Benefits:
○ It takes the same amount of time to get a piece of

data, no matter how many pieces are stored (also
true of R’s vectors!)

○ It can be very fast to add or remove data
● Drawbacks:

○ There’s no innate order to hash tables
○ You need to make sure the addresses are unique

or can handle multiple things at the same address
○ If you don’t save a list of addresses, you may not

know how many items are in your table
○ Vectorization is right out

@rctatman

To review…

● Linked lists
● Hashtables

Same data
type

Different data
types

1D Atomic vector List

2D Matrix Data frame

N D Array

R’s Data Structures Data Structures NOT in R

@rctatman

To review…

● Linked lists

● Hashtables

Same data
type

Different data
types

1D

2D

N D

R’s Data Structures Data Structures NOT in R

@rctatman

Thanks!
Questions?

@rctatman

