Mixed Effects Regression

Dr. Rachael Tatman September 26, 2018

Classification Regression

Unsupervised learning

Hypothesis testing

Feature selection

Dimensionality reduction

Simpson's Paradox

The state of California is spending more per student on white, not Hispanic students than on many other groups of students!

 Visualizing Simpson's Paradox by Kaggle user WesDuckett

Simpson's Paradox

...except that effect disappears when you look within age groups.

(There are a higher number of older special needs student who are white, not Hispanic & skewing the spending by pupil.)

 Visualizing Simpson's Paradox by Kaggle user WesDuckett

It's important to control for grouping variables if you're looking for explanatory power!

- 1. Select **dependent** variable
- 2. Select **fixed** variables
- 3. Select **random** variables
- 4. Fit model
- 5. Check for **intraclass correlation** of random variables
- 6. Analyze model output

- 1. Select **dependent** variable
 - a. What are you interested in measuring/affecting?
 - b. Examples: Click through rate in an A/B test
- 2. Select **fixed** variables
- 3. Select **random** variables
- 4. Fit model
- 5. Check for **intraclass correlation** of random variables
- 6. Analyze model output

- 1. Select **dependent** variable
- 2. Select **fixed** variables
 - a. What are you interested in modelling the effect of?
 - b. Example: Whether someone was in Group A or Group B
- 3. Select **random** variables
- 4. Fit model
- 5. Check for **intraclass correlation** of random variables
- 6. Analyze model output

- 1. Select **dependent** variable
- 2. Select **fixed** variables
- 3. Select **random** variables
 - a. What groups might behave differently that you want to control for?
 - b. Example: Users who are using different browsers
- 4. Fit model
- 5. Check for **intraclass correlation** of random variables
- 6. Analyze model output

- 1. Select **dependent** variable
- Select **fixed** variables
- 3. Select **random** variables
- 4. Fit model
 - a. In R: Imer from the Ime4 package
 - b. In Python: mixedlm from statsmodels
 - c. Validate as you would with other models of the same class
- 5. Check for **intraclass correlation** of random variables
- 6. Analyze model output

- 1. Select **dependent** variable
- 2. Select **fixed** variables
- 3. Select **random** variables
- 4. Fit model
- Check for intraclass correlation of random variables
 - Check that members of the classes you're treating as groups actually do behave like each other
- 6. Analyze model output

- 1. Select **dependent** variable
- 2. Select **fixed** variables
- 3. Select **random** variables
- 4. Fit model
- 5. Check for **intraclass correlation** of random variables
- 6. Analyze model output
 - a. Visualizations (I like the sjPlot package in R)

Example time!

Very nice Python example:

https://www.kaggle.com/ojwatson/mixed-models

R walkthrough:

 https://www.kaggle.com/rtatman/mixed-models-logistic-r egression

Thanks! Questions?

Twitter: @rctatman

